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Abstract. We classify 4-qubit pure states under the stochastic local operation and classical communication
(SLOCC). There exist twenty three essentially different classes of states, giving rise to a four-graded
partially ordered structure. We also give the criterion to judge which class an arbitrary 4-qubit state
belongs to. We re-classify the 4-qubit pure state into 2× 2× 4, 4× 4 aspects. Finally, we give our analysis
of the classification difference of methods for the 3-qubit pure state.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 03.67.Mn Entanglement production, characterization and manipulation

QICS. 03.05.+c Characterization and classification of entanglement

1 Introduction

The understanding of entanglement is at the heart of
quantum information theory (QIT). In view of the central
role of entanglement in quantum information processing,
it is important to have both a qualitative and quantitative
theory of entanglement. Due to the non-local character of
the correlations that entanglement induces, it is expected
that entanglement is especially important in the context
of many body interactions. Despite much effort, however,
it has proven exceedingly difficult to gain insight into the
structure of multipartite entanglement.

A lot of work has been undertaken to investigate the
classification of entanglement of pure multipartite states.
To date, a solution has been found to the two-particle pure
state entanglement classification under local operations
assisted with classical communication (LOCC), which was
solved through the local rank [1,2]. Multi-particle en-
tanglement shows much richer structure than the two-
particle scenario. Dur et al. gave the classification of
the 3-qubit state under stochastic LOCC (SLOCC) [3,
4]. Verstraete et al. exploited group theory to classify
the 4-qubit pure state [5]. In particular, Akimasa Miyake
gave the onion-like classification of multipartite entangled
classes for 2 × 2 × 3 and 2 × 2 × 4 (2 × 2 × n) quan-
tum systems based on SLOCC and hyperdeterminants [6–
8] using algebraic geometry method. In addition, Karol
Zyczkowski and Ingemar Bengtsson introduced quantum
entanglement from geometric approach [14] which is very
interesting. In this paper, we would like to investigate the
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classification structure of a 4-qubit pure state and some
relevant problems.

The paper is organized as follows: in Section 2 we
first review known classification results of the 4-qubit pure
state, then we draw some conclusions about the classifica-
tion structure. We also give a criterion to determine which
class an arbitrary 4-qubit state belongs to. In Section 3 we
classify the 4-qubit pure state from the 2×2×4, and 4×4
angles, which also exhibit plentiful and substantial struc-
ture. In Section 4 we derive different classification methods
of the 3-qubit pure state and give our judgment. Finally,
some concluding remarks are summarized in Section 5.

2 Classification structure of the 4-qubit pure
state

There are two transformations: local unitary (LU) and
SLOCC transformations, which are used to classify states
in general. In this paper, we only discuss the SLOCC
transformation. SLOCC is a complete positive projective
measurement which makes the trace decrease by select-
ing a series of successful measurement results. In short,
the multipartite SLOCC classification is equivalent to the
classification of orbits of the natural action: a direct prod-
uct of special linear groups SLn1(C)×· · ·×SLni(C). The
theorem in reference [4] states that two multipartite pure
states belong to the same class under SLOCC if and only
if (iff) they are related by means of an invertible local op-
erator (ILO). The four-qubit pure state can naturally be
expressed by SLOCC operations of the form

|Ψ ′〉 = A1 ⊗A2 ⊗A3 ⊗A4|Ψ〉 (1)
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Table 1. Entanglement situation of 4-qubit pure state.

State Four particle Three particle Two particle Separable state Hydeterminant

entanglement entanglement entanglement entanglement DetA4

Gabcd a �= 0, b �= 0, c �= 0, d �= 0 impossibility impossibility impossibility DetA4 �= 0
Labc2 a �= 0, b �= 0, c �= 0, impossibility impossibility a = b = c = 0; |0000〉 DetA4 = 0
La2b2 a �= 0, b �= 0 impossibility a = b = 0; AC|EPR〉 impossibility DetA4 = 0
Lab3 yes impossibility impossibility impossibility DetA4 = 0
La4 yes impossibility impossibility impossibility DetA4 = 0
La2o3⊕1

a �= 0 a = 0; |0〉A|W 〉BCD impossibility impossibility DetA4 = 0

Lo5⊕3
yes impossibility impossibility impossibility DetA4 = 0

Lo7⊕1
yes impossibility impossibility impossibility DetA4 = 0

Lo3⊕1o3⊕1
impossibility |0〉A|GHZ〉BCD impossibility impossibility DetA4 = 0

with Ai (i = 1, 2, 3, 4) full rank, i.e. invertible 2×2 matri-
ces. By chance, a useful relation can be shown,

SL(2, L) ⊗ SL(2, L) � SO(4, C) (2)

where SO(4, C) denotes the noncompact group of complex
orthogonal matrices (OTO = I4) [10]. reference [4] also
shows there is a finite number of classes under SLOCC
with Hilbert space C2 ⊗Cn2 ⊗Cn3 , i.e. having a qubit at
least in one of the subsystems. In other cases, there are an
infinite number of classes. This has been shown by Frank
Verstraete et al. who generalized the singular value decom-
position to complex orthogonal matrix equivalent classes,
then divided the 4-qubit pure state into nine classes [5,10]

Gabcd =
a+b
2

(|0000〉+|1111〉) +
a−d

2
(|0011〉+|1100〉)

+
b+c
2

(|0101〉+|1010〉) +
b−c
2

(|0110〉+|1001〉)

Labc2 =
a+b
2

(|0000〉+|1111〉〉) +
a−b
2

(|0011〉+|1100〉)
+ c(|0101〉+ |1010〉) + |0110〉) = L(1)

La2b2 = a(|0000〉+ |1111〉) + b(|0101〉+ |1100〉)
+ |0110〉+ |0011〉 = L(2)

Lab3 = a(|0000〉+|1111〉) +
a+b
2

(|0101〉+|1010〉)

+
a− b

2
(|0110〉+ |1001〉) +

i√
2
(|0001〉

+ |0010〉+ |0111〉+ |1011〉) = L(3)

La4 = a(|0000〉+ |0101〉+ |1010〉+ |1111〉)
+ (i|0001〉+ |0110〉 − i|1011〉) = L(4)

La2o3⊕1
= a(|0000〉+ |1111〉) + (|0011〉

+ |0101〉+ |0110〉) = L(5)

Lo5⊕3
= |0000〉+ |0101〉+ |1000〉+ |1110〉 = L(6)

Lo7⊕1
= |0000〉+ |1011〉+ |1101〉+ |1110〉 = L(7)

Lo3⊕1o3⊕1
= |0000〉+ |0111〉 = L(8). (3)

Obviously, the fact that the former six classes includ-
ing parameters indeed elucidates the existence of infinite
SLOCC orbits for the 4-qubit pure state.

Fig. 1. The partially ordered structure of multipartite pure
entangled states in the 2× 2×n (n ≥ 4) format, including the
3-qubit case. Each class, corresponding to the SLOCC orbit, is
labeled by the representative, local rank, and its name. Non-
invertible local operations, indicated by dashed arrows, de-
grade “higher” entangled classes into “lower” entangled cases.

We note that the representative state for each class
of four-qubit states connected by SLOCC operations is
in normal form, namely for those pure states, all their
reduced local operators are proportional to the identity
matrix. By calculating the determinant of reduced density
matrices, we explore their entanglement situations. The
results are given in Table 1.

As a remark, for six classes with parameters, there are
restriction conditions: Gabcd with a �= 0, b �= 0, c �= 0, d �=
0; Labc2 with a �= 0, b �= 0, c �= 0; La2b2 with a �= 0, b �= 0;
La2o3×1

with a �= 0; other classes have no restrictions [5].
Besides, references [6–8] give the onion-like classifica-

tion of SLOCC orbits in the 2 × 2, k × k (k × k′, k′ ≤ k),
2× 2× 2, 2× 2× 3 and 2× 2× 4 cases. In order to depict
it clearly, the figure of 2× 2× n (n ≤ 4) format classifica-
tion [7,8] is drawn in Figure 1. The aim of this section is
to deduce the coarse classification of 2×2×2×2 quantum
systems using the method similar to the 3-qubit case. For
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Fig. 2. Twenty three partially ordered structures of 4-qubit pure entangled states. Each class is labeled by the representative
and local ranks. SLOCC operations indicated by dashed arrows, degrade “higher” entangled classes into “lower” entangled one.

clarification, the classification structure is depicted con-
cretely in Figure 2.

Now, we summarize the main result by presenting it
in the form of a conclusion: consider a pure state in
the Hilbert space C2 ⊗ C2 ⊗ C2 ⊗ C2. They are divided
into 23 entangled classes, seen in Figure 2, under in-
vertible SLOCC operations. The 23 entangled classes con-
stitute the four-graded partially ordered structure, where
non-invertible SLOCC operations degrade higher entan-
gled classes into lower entangled ones. States lying in
the same layer are non-invertible, even under probabilistic
transformation.

Then, we may ask how to judge which class an arbi-
trary 4-qubit state belongs to. Based on the achievements
of previous work, we now summary and give a concrete
procedure to distinguish these classes. We first present a
table to compare some quantities which are different for
different classes. Here, we list partial entropy, local rank,
and hyperdeteminant, see Table 2.

In Table 2, the {i − jkl, i, j, k, l = A,B,C,D} class
includes i|GHZ〉jkl, i|W 〉jkl, (i, j, k, l = A,B,C,D). It is
worth noting that the classes with a star cannot be classi-
fied using only the partial entropy and the hyperdetermi-
nant. But we can settle this problem through the sign
of conditional entropy S(ij|kl), (i, j, k, l = A,B,C,D).
Specifically, if S(ij|kl) ≥ 0, this class belongs to the ij−kl
class. There exists a special state |EPR〉ij − |EPR〉kl
which has many fascinating properties [7]. Firstly, we give
the definition of the mutual entropy

S(M : N) = S(M) + S(N) − S(M,N) (4)

Table 2. Values of the local entropies SA, SB, SC , SD, hyper-
determinant DetA4 and the local rank.

State SA SB SC SD DetA4 Local rank

ABCD* >0 >0 >0 >0 �=0 (2, 2, 2, 2)∗
A-BCD =0 >0 >0 >0 0 (1, 2, 2, 2)
B-ACD >0 =0 >0 >0 0 (2, 1, 2, 2)
C-ABD >0 >0 =0 >0 0 (2, 2, 1, 2)
D-ABC >0 >0 >0 =0 0 (2, 2, 2, 1)
AB-CD* >0 >0 >0 >0 0 (2, 2, 2, 2)∗
AC-BD* >0 >0 >0 >0 0 (2, 2, 2, 2)∗
AD-BC* >0 >0 >0 >0 0 (2, 2, 2, 2)∗
A-B-CD =0 =0 >0 >0 0 (1, 1, 2, 2)
A-C-BD =0 >0 =0 >0 0 (1, 2, 1, 2)
A-D-BC =0 >0 >0 =0 0 (1, 2, 2, 1)
B-C-AD >0 =0 =0 >0 0 (2, 1, 1, 2)
B-D-AC >0 =0 >0 =0 0 (2, 1, 2, 1)
C-D-AB >0 >0 =0 =0 0 (2, 2, 1, 1)
A-B-C-D =0 =0 =0 =0 0 (1, 1, 1, 1)

where M,N represent different subsystem, respectively.
Then we can judge the type of classification according to
the following Theorem (Proof in Appendix A).

If ρ(M,N) = ρ(M)⊗ρ(N) then S(M : N) = 0, on the
contrary, if S(M : N) = 0 then ρ(M,N) = ρ(M) ⊗ ρ(N).
The steps needed to judge the type of classification for an
arbitrary 4-qubit pure state are the following:

Step 1. Calculate the local rank and partial entropy to
separate the easiest determined class {A-BCD,
B-ACD, C-ABD, D-ABC, A-B-C-D}.
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Table 3. Classification structure of a 4-qubit pure state in the 2 × 2 × 4 format.

State/Class A-B-CD C-D-AB A-C-BD B-D-AC A-D-BC B-C-AD

Gabcd G G G G G G
Labc2 a �= 0, b �= 0, c �= 0 G G G G G G

a = b = c = 0 S S S S S S
La2b2 a �= 0, b �= 0 G G M2 M1 G G

a = b = 0 B1 B1 S B3 B1 B2

Lab3 G G G G G G
La4 G G M2 M1 G G
La2o3⊕1

a �= 0 M2 M1 M1 M2 M1 M2

a = 0 B1 W B1 W B1 W
Lo5⊕3

M2 M2 M1 M2 M1 M2

Lo7⊕1
M2 M1 M1 M1 M2 M1

Lo3⊕1o3⊕1
B1 GHZ B1 GHZ B1 GHZ

Step 2. Calculate the conditional entropy or mutual en-
tropy to determine which ij − kl class {AB-
CD, AC-BD, AD-BC} the state in the remain-
ing classes belongs to, not including the genuine
4-qubit pure state.

Step 3. For nine inequivalent classes of genuine 4-qubit
entanglement, we can use the invariant to
judge them. reference [11] gives the invariant
B0000, D

1
0000, D

2
0000 and F0000 to distinguish six

classes including parameters. For the latter three
classes without parameters. It is of no use because
these invariants are all zero. Nevertheless, the ba-
sic covariant knowledge gives us C3111, D2200 to
distinguish them [12,13].

To sum up, we have presented the classification structure
of a 4-qubit pure state, and gave the criterion to distin-
guish and judge which type of classification for any 4-qubit
pure state in theory.

3 Classification of the 4-qubit pure state
from 2 × 2 × 4, 4 × 4 components

In this section, we re-classify the 4-qubit pure state from
another perspective. To date, there are many studies for
the classification of C2 ⊗Cn and C2 ⊗C2 ⊗Cn. They are
covered in a theorem [6–8].

Theorem: Consider pure states in the Hilbert space
H = C2 ⊗C2 ⊗Cn. They are divided into nine entangled
classes (G,M1,M2, GHZ,W,B1, B2, B3, S) under invert-
ible SLOCC operations. These nine entangled classes con-
stitute the five-graded partially ordered structure, where
non-invertible SLOCC operations degrade higher entan-
gled classes into lower entangled ones. See Figure 1.

By use of this theorem, we can obtain the concrete
classification structure of a 4-qubit pure state in the 2 ×
2 × 4 format. Table 3 illustrates that the structure of a
re-classified state is plentiful.

If we re-classify the 4-qubit pure state according to
Cn⊗Cn, we acquire new results which are listed in Table 4.
The state set with local rank r ≤ j(j = 1, ..., k + 1) is a
closed subvariety under SLOCC, the notation Sj−1 is a

Table 4. Classification structure of a 4-qubit pure state in the
4 × 4 format.

State/Class AB-CD AC-BD AD-BC

Gabcd S4 − S3 S4 − S3 S4 − S3

Labc2 S4 − S3 S4 − S3 S4 − S3

La2b2 S4 − S3 S3 − S2 S4 − S3

Lab3 S4 − S3 S4 − S3 S4 − S3

La4 S4 − S3 S3 − S2 S4 − S3

La2o3⊕1
S3 − S2 S3 − S2 S3 − S2

Lo5⊕3
S3 − S2 S3 − S2 S3 − S2

o7⊕1 S3 − S2 S3 − S2 S3 − S2

Lo3⊕1o3⊕1
S2 − S1 S2 − S1 S2 − S1

singular set of Sj . The outermost general set is Sk+1−Sk,
the inner set is S1 = S1 − S0. The result becomes simpler
comparing with Table 4.

4 Discussion of different 3-qubit
entanglement classifications

Although the classification for the triqubit pure state is
quite mature, there always exists some different bifurca-
tions. In general, triqubit pure states are divided into two
inequivalent classes: the GHZ-class and the W -class. In
particular, the GHZ state |GHZ〉 = (|000〉+ |111〉)/√2 is
also called the 3-qubit maximally entangled state, which
is widely studied and used in QIT [14].

The quantification of entanglement is well understood
for bipartite pure states, however, in a more complex
scenario (multipartite systems or mixed states) a com-
plete theory on the quantification of entanglement is still
lacking. To date, the quantification of multipartite sys-
tems has made great progress. Methods to quantify mul-
tipartite entanglement have used either an operational
approach [15] or an axiomatic approach [16–18]. These
allow determination of the relative entropy of entangle-
ment (RE) [16,17], reversed RE [19], negativity [20,21],
reshuffling negativity [22], the robustness of entangle-
ment [18,23], and particularly, the geometric measure of
entanglement (GME) [24–28] for which we have given
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a generalisation [23]. While the entanglement cost [27,
30], the distillable entanglement [31] and the singlet frac-
tion [32,33] belong to operational measures. In addition,
there are other measures describing multipartite entangle-
ment in the literature, such as squashed entanglement [34],
Hilbert-Schmidt distance [35], n-tangle [36] etc. Without
loss of generality, for a relatively simple triplet scenario,
the best entanglement quantifier to measure the genuine
three particle entanglement is 3-tangle [37,38]

τ = 4|Det222Ψ | (5)

where Det222Ψ is a hyperdeterminant.
The general expression of the triqubit pure state is

|Ψ〉 =
∑

i,j,k

ti,j,k|ijk〉 i, j, k = 0, 1 (6)

then the hyperdeterminant is

Det222Ψ = DetA3

= t2000t
2
111 + t2001t

2
100 + t2010t

2
101

+4(t000t011t101t110 + t001t010t100 + t111)
− (t000t001t110t111 + t000t010t101t111

+t000t100t011t111 + t001t010t101t110

+t010t100t011t101). (7)

The value range of 3-tangle is [0, 1] (see Appendix B). It is
essential to distinguish different triqubit entangled classes
according to 3-tangle. There are two genuine triqubit
classes: the GHZ-class and theW -class [4]. When 3-tangle
is zero, the state must belong to the W -class; otherwise
the state is in the GHZ-class category.

We present the necessary condition of being in the
maximally entangled GHZ state for a triqubit pure state
form with different parameters. For the general expression
of the 3-qubit pure state formula (5), the state is a maxi-
mally entangled triqubit state if and only if (iff) 3-tangle
τ = 1, and the LU polynomial invariants I1 = I2 = I3 =
1/2, I4 = 1/4 [37]. Here

I1 = trρ2
A, I2 = trρ2

c , I3 = trρ2
c ,

I4 = tr ((ρA ⊗ ρB)ρAB) (8)

where

ρAB = trC |ψ〉〈ψ|, ρA = trBC |ψ〉〈ψ|,
ρB = trAC |ψ〉〈ψ|, ρC = trAB|ψ〉〈ψ|. (9)

In addition, the GHZ-state family of 3-qubit pure states
can be expressed as [4]:

|Ψ〉 =
√
K(cos δ|000〉 + sin δeiϕ|ϕAϕBϕC〉) (10)

where

|ϕA〉 = cosα|0〉 + sinα|1〉 (11)
|ϕB〉 = cosβ|0〉 + sinβ|1〉 (12)
|ϕC〉 = cos γ|0〉 + sin γ|1〉 (13)

and

K = (1 + 2 cos δ sin δ cosα cosβ cos γ cosϕ)−1 (14)

their ranges are

K ∈
(

1
2
,∞

)
, δ ∈

(
0,
π

4

]
, α, β, γ ∈

(
0,
π

2

]
, ϕ ∈ [0, 2π)

(15)
respectively. It is easy to obtain that the state is in
a maximally entangled state if and only if (iff) τ =
sin 2δ(sinα sinβ sin γ − cosα cosβ cos γ cosϕ), I1 = I2 =
I3 = 1/2, I4 = 1/4,

As far as the 3-qubit classification is concerned, there
still exist different classification methods in the litera-
ture [39–41]. Here, we present these differences to elucidate
that there are indeed only two kinds of classes for 3-qubit
pure state based on the genuine entanglement measure of
the triqubit pure state, 3-tangle.

Among these multipartite measures of entanglement,
references [39,40] define a genuine multipartite entangle-
ment measure

E(Ψ) =

⎧
⎨

⎩
1
N

N∑
i=1

Si, if Si �= 0∀i,
0, if otherwise,

(16)

where
Si = −Tr[ρψ log(ρψ)] (17)

is the reduced von Neumann entropy. By use of this mea-
sure, reference [40] points out the existence of another fam-
ily except the GHZ-state family and the W -state family
for a 3-qubit pure state [4]. They provide an example

|ϕ〉 = x1|110〉 + x2|101〉 + x3|011〉 + x4|100〉 (18)

when x1, x2 are all nonzero, this state is not a GHZ-class
state. When x4 is nonzero, this state is not equivalent to
a W -class state. But we calculate its 3-tangle

τ = 4|x2
3x

2
4| (19)

by selecting appropriate values of x3, x4, regardless of the
value of x1, x2, we can always make the range of 3-tangle
belong to (0, 1]. Obviously, this state should belong to the
GHZ-state family. When x3 or x4 is zero, clearly τ = 0,
so this state belongs to the W -state family. Besides this
state, they also give the state

|φ〉 = aWj + beiαWt + ceiβWi + deiγW̃i (20)

where W, W̃ (i �= j �= t) are the basis vectors of a triqubit
system.

{W1 = |000〉,W2 = |110〉,W3 = |101〉,W4 = |011〉,
W 1 = |111〉,W2 = |001〉,W 3 = |010〉,W 4 = |100〉}. (21)

The state presented in equation (20) belongs to nei-
ther the GHZ-state family nor the W -state family when
they choose |a| = |b| = 0.462157, |c| = 0.653614,
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|d| = 0.381546 with arbitrary phase. But we compute 3-
tangle τ = 4|c2d2e2i(β+γ)| = 4|c|2|d|2 = 0.997535, which
clearly shows this state belongs to the GHZ-class. Also
the state

|ψ〉 = a|000〉+ beiα|110〉+ ceiβ |101〉+ deiγ |011〉+ feiσW̃i

(22)
when the subscript of Wi is 1, the 3-tangle is

τ = 4|a2f2e2iθ + 4abcdei(α+β+γ)|
= 4[a4f4 + 16a2b2c2d2 + 8a3bcdf2 cos(2θ − α− β − γ)].

(23)

Choosing |a| = 2/3, |b| = |c| = |d| = 1/3, |f | =
√

2/3
with arbitrary phase factor, we obtain τ = 64/81 cos((2θ−
α− β − γ)/2) ∈ [0, 0.79]. When we choose an appropriate
phase angle to make cos((2θ − α − β − γ)/2) = 0, this
state belongs to the W -class; otherwise this state belongs
to the GHZ-class. However reference [17] claims that this
state belongs purely to the W type state, in contradiction
with our results.

Finally, reference [41] shows a state system ex-
pressed as

|ψ〉 = λ1|001〉+ λ2|010〉+ λ3|100〉+ λ4|111〉 (24)

which belongs to neither the GHZ type nor the W type
state. Similarly, we can use 3-tangle to distinguish this
state. The 3-tangle is

τ = 4|λ1λ2λ3λ4|. (25)

When one of the four coefficients λ1, λ2, λ3, λ4 is zero, τ =
0, then this state falls into the category of the W class.
When λ1 = λ2 = λ3 = λ4 = 1/2, this state is a maximally
entangled state. In other cases the 3-tangle falls into τ ∈
(0, 1), this state belongs to the GHZ-state family. All in
all, the coefficients of this state determine which class the
state belongs to. Hence we think the classification method
of the GHZ type and the W type is more reasonable than
other classification techniques.

5 Conclusion

The paper discusses the classification structure of 3-qubit
and 4-qubit pure states under SLOCC in detail. Nonethe-
less, this work is useful for developing a comprehensive
understanding of the classification structure of three and
four particles, and we regard this work as a foundation
for exploiting the more general multi-particle cases. We
first review some achievable results and deduce our con-
clusion that there exist twenty three essentially different
classes of states, giving rise to a four-graded partially or-
dered structure for the 4-qubit pure state. We also give
the criteria necessary to judge which class an arbitrary
4-qubit state belongs to. In addition, we re-classify the
4-qubit pure state in terms of 2 × 2 × 4, and 4 × 4 as-
pects, respectively. Finally, we analyze different classifica-
tion phenomena of the triqubit pure state and give our

interpretation. For mixed state classification, the 3-qubit
case is generally solved by Acin et al. [42]. Multipartite
mixed state classification is a formidable task, we hope to
make some progress in classifying 4-qubit mixed states in
future work.

We thank each member of our theoretical group, especially,
mathematical Professor Hu Sen and his students for useful dis-
cussions. This project was supported by the National Natural
Science Foundation of China under Grant No. 60573008.

Appendix A: Proof of theorem

In this appendix, we prove the Theorem: Bipartite pure
state |NM〉 with dimension of M and N (the dimension
is not restricted), is an entangled state if and only if (iff)
the conditional entropy S(M |N) < 0.

Proof : According to the property of entropy:
S(N,M) = 0 for pure state and non-negativity of reduced
von Neumann entropy S(N) > 0, we obtain the condi-
tional entropy S(M |N) = S(N,M)−S(N) = −S(N) < 0.
Contrarily, if S(M |N) < 0 we have S(N,M) < S(N), by
use of the relation S(N,M) = 0, we can obtain S(N) > 0.
Thus we deduce state |NM〉 is an entangled state because
the partial entropy of the separable state is just zero. The
proof finishes. �

Appendix B: The range of 3-tangle

In this appendix, we prove the range of 3-tangle is [0, 1]
from a new angle. Without loss of generality, the expres-
sion of 3-qubit general GHZ-class state is

|Ψ〉 =
√
K(cos δ|000〉+ sin δeiϕ|ϕAϕBϕC〉) (26)

where

|ϕA〉 = cosα|0〉 + sinα|1〉 (27)
|ϕB〉 = cosβ|0〉 + sinβ|1〉 (28)
|ϕC〉 = cos γ|0〉 + sinγ|1〉 (29)

and

K = (1 + 2 cos δ sin δ cosα cosβ cos γ cosϕ)−1 (30)

their ranges are:

K ∈
(

1
2
,∞

)
, δ ∈

(
0,
π

4

]
, α, β, γ ∈

(
0,
π

2

]
, ϕ ∈ [0, 2π)

(31)
respectively, then the 3-tangle is expressed as:

τ =
4 cos2 δ sin2 δ sin2 α sin2 β sin2 γ

(1 + 2 cos δ sin δ cosα cosβ cos γ cosϕ)2
(32)

dependent on the condition

cos2 α+ sin2 α = 1
cos2 β + sin2 β = 1
cos2 γ + sin2 γ = 1. (33)
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Fig. B.1. Function f is monotonically increasing with the vari-
able y.

By the Language multiplier method, we obtain when
δ = π/4, ϕ = π, τ reaches a maximum independent of
the values of α, β, γ. That is

τ =
sin2 α sin2 β sin2 γ

(1 − cosα cosβ cos γ)2
. (34)

Here, we want to prove τ = ((sin2 α sin2 β sin2 γ)/(1 −
cosα cosβ cos γ)2) ≤ 1.

Let us call cosα = x, cos β = y, cos γ = z, obviously
0 ≤ x, y, z < 1, thus we have to prove that ((1 − x2)(1 −
y2)(1 − z2)/(1 − xyz)2) ≤ 1, i.e. simplify to show that

2x2y2z2 − 2xyz − x2y2 − x2z2 − y2z2 + x2 + y2 + z2 ≥ 0
2xyz + x2y2 + x2z2 + y2z2 − x2 − y2 − z2 − 2x2y2z2 ≥ 0.

(35)

Let f(x, y, z) = 2xyz + x2y2 + x2z2 + y2z2 − x2 − y2 −
z2 − 2x2y2z2, then we take the derivatives of f(x, y, z)
with respect to x, y, z respectively (which we denote by
fx, fy, fz and set them to zero)

fx = 2yz + 2xy2 + 2xz2 − 2x− 4xy2z2 = 0
fy = 2xz + 2yx2 + 2yz2 − 2y − 4yx2z2 = 0

fz = 2xy + 2zx2 + 2zy2 − 2z − 4zx2y2 = 0. (36)

We immediately observe by considering linear combina-
tion of the resulting equations xfx − yfy = 0, that is

2(x2 − y2)(z2 − 1) = 0. (37)

For a maximum we must have x = y = z.
The reason: due to the fact that f(x, y, z) is invariant

under permutations of the variables, we only have to check
two of the surfaces, e.g. the surfaces specified by x = 0, x =
1 (actually x = 1 − ε, where ε is an infinitesimally small
positive number).
(1) f(0, y, z) = y2z2 − y2 − z2 ≤ 0.

The maximum in this case is obtained for y = 0, z =
1 − ε or z = 0, y = 1 − ε (derivative method);

(2) f(1, y, z) = −(yz − 1)2 ≤ 0.
It can be checked that a necessary condition for a max-
imum in the second case is y = z, see Figure B.1, we
see f(x, y, z) = −(y2 − 1)2 is monotonically increasing
in y ∈ [0, 1), and is thus maximized for y = z = 1 − ε.

So, we obtain f(x, y, z) ≤ f(1, 1−ε, 1−ε) < 0. i.e. τmax = 1
as desired. Thus the proof comes to an end. �
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